Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yi Ma, Yong-Ke He and Zheng-Bo Han*

School of Chemical Science and Engineering, Liaoning University, Shenyang 110036, People's Republic of China

Correspondence e-mail: ceshzb@lnu.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.034$
$w R$ factor $=0.090$
Data-to-parameter ratio $=10.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
catena-Poly[[triaquacadmium(II)]- $\mu_{2}-$ pyrazine-2,3-dicarboxylato]

The title $\mathrm{Cd}^{\mathrm{II}}$ coordination polymer, $\left[\mathrm{Cd}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{n}$, was synthesized by reacting $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and pyrazine-2,3-dicarboxylic acid under hydrothermal conditions. Singlecrystal X-ray studies reveal that self-assembly between the bridging ligands and metal ions results in a one-dimensional coordination polymer, in which the $\mathrm{Cd}^{\mathrm{II}}$ ion is heptacoordinated and shows a $\left[\mathrm{CdNO}_{6}\right]$ pentagonal-bipyramidal geometry.

Comment

Pyrazine-2,3-dicarboxylic acid $\left(\mathrm{pzdcH}_{2}\right)$ is a suitable multidentate bridging ligand to build polymeric coordination compounds. Up to now, the pzdc ligand and some simple dblock metal complexes have been X-ray characterized (Premkumar et al., 2004; O’Connor et al., 1982; Zou et al., 1999). To our knowledge, no chiral coordination compounds assembled using the pzdc ligand and metal ions have been reported. Here we report the reaction of pzdcH_{2} with a $\mathrm{Cd}^{\mathrm{II}}$ salt, which afforded a chiral one-dimensional $\mathrm{Cd}^{\text {II }}$ coordination polymer, (I).

(I)

Complex (I) adopts a one-dimensional zigzag chain structure composed of $\mathrm{Cd}^{\mathrm{II}}$ ions bridged by pzdc ligands (Fig. 1). One part of the ligand coordinates via N and O atoms, while the second carboxylate group contributes two O atoms to chelate the adjacent $\mathrm{Cd}^{\text {II }}$ ion. Corresponding bond lengths range from 2.287 (5) to 2.398 (5) A (Table 1). Distorted pentagonal bipyramidal coordination around the metal centre is completed by three water molecules, with $\mathrm{Cd}-\mathrm{O}$ bond lengths in the range 2.210 (5)-2.530 (5) \AA. The zigzag chains are interconnected by an extensive network of hydrogen bonds operating via the coordinated water molecules, O atoms of carboxylate groups and N atoms of pzdc ligands, forming a three-dimensional framework (Fig. 2 and Table 2).

Experimental

A mixture of $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.145 \mathrm{~g}, 0.5 \mathrm{mmol})$, pyrazine-2,3dicarboxylic acid $(0.084 \mathrm{~g}, 0.5 \mathrm{mmol}), \mathrm{NaOH}(0.04 \mathrm{~g}, 1 \mathrm{mmol})$ and

Received 9 August 2006
Accepted 4 September 2006
water (10 ml) was sealed in a 23 ml Teflon-lined reactor, heated at 453 K for 3 d , and then cooled to room temperature at a rate of $5 \mathrm{~K} \mathrm{~h}^{-1}$ (yield 20\%). Analysis calculated for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{CdN}_{2} \mathrm{O}_{7}$: C 21.67, H 2.42 , N 8.42%; found: C 21.55, H $2.45, \mathrm{~N} 8.73 \%$.

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]$
$M_{r}=332.54$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=5.7365$ (12) \AA
$b=10.903$ (3) \AA
$c=15.362$ (3) \AA
$V=960.8(3) \AA^{3}$

Data collection

Bruker P4 diffractometer ω scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.450, T_{\text {max }}=0.537$
1798 measured reflections
1635 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.090$
$S=1.02$
1635 reflections
163 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
Z=4
$$

$D_{x}=2.299 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\mu=2.30 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless $0.37 \times 0.35 \times 0.27 \mathrm{~mm}$

1510 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=27.5^{\circ}$
3 standard reflections every 97 reflections intensity decay: $<1 \%$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.059 P)^{2}\right. \\
& \quad+0.0261 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=1.30 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.78 \mathrm{e} \AA^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& 331 \text { Friedel pairs } \\
& \text { Flack parameter: }-0.06(6)
\end{aligned}
$$

Table 1

Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cd} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.398(5)$	$\mathrm{Cd} 1-\mathrm{O} 1 W$	$2.530(5)$
$\mathrm{Cd} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.398(5)$	$\mathrm{Cd} 1-\mathrm{O} 2 W$	$2.210(5)$
$\mathrm{Cd} 1-\mathrm{O} 4$	$2.287(5)$	$\mathrm{Cd} 1-\mathrm{O} 3 W$	$2.387(5)$
$\mathrm{Cd} 1-\mathrm{N} 2$	$2.346(5)$		
$\mathrm{O} 2 W-\mathrm{Cd} 1-\mathrm{O} 4$	$176.4(3)$	$\mathrm{N} 2-\mathrm{Cd} 1-\mathrm{O} 3 W$	$78.34(19)$
$\mathrm{O} 2 W-\mathrm{Cd} 1-\mathrm{N} 2$	$104.8(3)$	$\mathrm{O} 4-\mathrm{Cd} 1-\mathrm{O} 1^{\mathrm{i}}$	$85.37(17)$
$\mathrm{O} 4-\mathrm{Cd} 1-\mathrm{N} 2$	$71.79(17)$	$\mathrm{O} 4-\mathrm{Cd} 1-\mathrm{O} 2^{\mathrm{i}}$	$88.69(18)$
$\mathrm{O} 2 W-\mathrm{Cd} 1-\mathrm{O} 3 W$	$85.5(2)$	$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 2^{\mathrm{i}}$	$54.82(15)$
$\mathrm{O} 4-\mathrm{Cd} 1-\mathrm{O} 3 W$	$94.9(2)$		
Symmetry			

Symmetry code: (i) $-x+\frac{1}{2},-y, z-\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{~N} 1^{\mathrm{ii}}$	0.85 (2)	2.22 (5)	2.981 (7)	148 (8)
$\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O} 4^{\text {iii }}$	0.85 (2)	1.98 (4)	2.796 (7)	160 (8)
$\mathrm{O} 2 W-\mathrm{H} 2 W A \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.85 (2)	1.86 (3)	2.701 (8)	171 (13)
$\mathrm{O} 2 W-\mathrm{H} 2 W B \cdots \mathrm{O} 2^{\text {iv }}$	0.84 (2)	2.20 (8)	2.882 (8)	137 (11)
$\mathrm{O} 2 W-\mathrm{H} 2 W B \cdots \mathrm{O} 3^{\text {iv }}$	0.84 (2)	2.41 (8)	3.042 (9)	132 (9)
$\mathrm{O} 3 W-\mathrm{H} 3 W A \cdots \mathrm{O} 1 W^{\text {iv }}$	0.85 (2)	2.12 (4)	2.916 (7)	157 (8)
$\mathrm{O} 3 W-\mathrm{H} 3 W B \cdots 3^{\text {v }}$	0.85 (2)	1.98 (6)	2.752 (8)	150 (10)

Figure 1
View of the structure of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. Symmetry codes: (i) $-x+\frac{1}{2},-y, z-\frac{1}{2}$; (ii) $-x+\frac{1}{2},-y, z+\frac{1}{2}$.

Figure 2
Plot depicting the hydrogen-bonded three-dimensional framework (dashed bonds) in the crystal structure of (I), as viewed down the [100] axis.

The water H atoms were located in a difference Fourier map and refined with free coordinates and an isotropic displacement parameter fixed at $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. The geometry was regularized using restraints for distances $\mathrm{O}-\mathrm{H}=0.85(2) \AA$ and $\mathrm{H} \cdots \mathrm{H}=$ 1.39 (1) Å. Other H atoms were placed in calculated positions and refined as riding on their carrier C atoms $\left[\mathrm{C}-\mathrm{H}=0.93 \AA\right.$ and $U_{\text {iso }}(\mathrm{H})$ $\left.=1.2 U_{\text {eq }}(\mathrm{C})\right]$. The highest peak is located $0.96 \AA$ from atom Cd 1 .

Data collection: XSCANS (Bruker, 2001); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

The authors thank the Program for Liaoning Excellent Talents in University for supporting this work (RC-05-11).

References

Bruker (2001). XSCANS (Version 2.31) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

O’Connor, C. J., Klein, C. L., Majeste, R. J. \& Trefonas, L. M. (1982). Inorg. Chem. 21, 64-67.
Premkumar, T., Govindarajan, S., Starosta, W. \& Leciejewicz, J. (2004). Acta Cryst. E60, o1305-o1306.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zou, J.-Z., Xu, Z., Chen, W., Lo, K. M. \& You, X.-Z. (1999). Polyhedron, 18, 1507-1512.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

